Sebuah Catatan Lecek !

Kumpulan Jurnal perjalanan, tips-tips apapun itu. dan catatan-catatan kecil lainya. A Litte works, sebenarnya adalah project terpendam saya. sebuah ide 'cemerlang' untuk menghemat memori. dan jawaban dari petanyaan berulang-ulang yang kerap kali mendatangi saya. *hehehehe*. blog ini nantinya akan berisi tentang hal-hal apa saja yang pernah saya pelajari dan saya anggap akan cukup berguna.

satu lagi, jangan merefer blog ini untuk jurnal ilmiah kalian yahhh.. saya sudah sediakan sumber dari bahan referensi saya supaya lebih lengkap tinjau langsung aja ke-sumbernya

penulis tidak bertanggung jawab atas hal apapun yang akan terjadi setelah pembaca merefer tulisan dari blog ini.

akhir kata..


Selamat Mengubek!


Friday, January 15, 2016

Calculation of Vertical Wall Breakwaters using Goda formulation (1984)

Hi there!
a few months ago I got an assignment from my boss to calculate the wave force infront of a vertical wall breakwater using Goda formulation. i found it quite 'a work' if you have to calculate it one by one using a calculator so that i'm (again) doing it using matlab as always, the case that i use is taken from problem example in the book itself (Example 4.1 Goda, 1984). here it is:

Calculate the wave pressure, uplift pressure, and their moment produced by wave of the following characteristicsincident on the upright section of the vertical wall breakwater shown in Fig below:


Wave : H’0 = 6.3 [m] , T1/3= 11.4  [s] , b=15 [deg]
Tide level : W.L = + 0.6 [m]

Sea bottom slope tanθ = 1/100

And this is my matlab script to calculate the : wave pressure, uplift pressure and their moments


clc; clear all; close all; 

%  Wave force calculation according to GODA, 1985
%  mei.ramdhani@gmail.com
%% UPDATE
% 27/10/15 : Iteration for calculating alfa 1 and 1/cosh(2*pi()*h/L) added
% tobe Updated
% 25/10/15 : tobe added --> Newton rapshon iteration for calculation L0

%% INPUT
% depth definition
h01= 9.5; %from SWL to the seabed
h02= 6.5; %from SWL to the end of the vertical wall  or h'
h03= 5 ;  %from SWL to the bagian kaki dari vertical wall atau d
h04= 4;   %from crest of BW to the SWL or hc

% Waves
H_0     =6.3;  %[m] Significant wave height in offshore (H'0)
Tsig    =11.4; %[s] Significant wave period in offshore (T1/3)
beta    =15;   %[deg] angle between the direction of wave approach and a line normal to BW

% Tide Level
LWL=0 ;  % [m] Lowest water level
HWL=0.6; % [m] Highest water level
MSL=0.3; % [m] Mean sea level

% Sea Bottom Slope
tan_teta=1/100;  

%Width of The bottom of the upright section 
B=15 ; %[m]
H1_3    =5.8  ;  % H1/3 taken from mike SW
Hmax    =8    ;  % eq. 3.26 (Goda, 1984) or from wave model simulation

%% LOADING GODA CURVE
g10=load('goda10.dat'); % calculation diagram for parameter alpha1 (Goda, 1984)
g11=load('goda11.dat');
g20=load('goda20.dat');
g21=load('goda21.dat');

%% WATER DEPTH AND CREST ELEVATION
h = h01+HWL; %[m] h
h1= h02+HWL; %[m] h'
d = h03+HWL; %[m] d
hc= h04-HWL; %[m] hcrest

%% CALCULATION OF WAVE LENGTH AND WAVE HEIGHT
L0      =202.7 % [m] calculated using newton rapshon (later)
H1L1    =H_0/L0 ; %H'0/L0
hL0     =h/L0   ; %h/L0
hb      =h+(h03*H1_3/100);

%% COEFICIENT FOR WAVE PRESSURE
the coefficient of alpha 1 is taken from this curve:
Calculation diagram for alpha 1

Digitzed the diagram save it to g10 and g11 file..

%alfa1
temp1=h/L0;
if temp1 <= 0.1, alfa1 = polyval(g10,temp1),...
else,alfa1 = polyval(g11,temp1);...  
end;

%alfa2
tema1=((hb-d)/(3*hb)*(Hmax/d)^2);
tema2=((2*d)/Hmax);
alfa2=min([tema1,tema2]);

and so does for the par1 parameter,  i get it from this curve
Calculation diagram for the factor of 1/cosh(2*pi*h/L)


if temp1 <= 0.15, par1= polyval(g20,temp1),...
else,par1 = polyval(g21,temp1);...  
end;

alfa3=(1)-(7.1/10.1)*(1-par1)

%% MAXIMUM ELEVATION OF THE WAVE PRESSURE

cosb=cos(beta*pi/180);
etas=0.75*(1+cosb)*Hmax;

%% PRESSURE COMPONENT
w0=1.03 %[ton/m3] spesific wight of sea water
p1=(1/2)*(1+cosb)*(alfa1+(alfa2*(cosb)^2))*(w0)*(Hmax);  %[ton/m2]
p2=p1/(1/par1)
p3=alfa3*p1; %[ton/m2]

if etas > hc,...
    p4=p1*(1-(hc/etas)),... %[ton/m2]
else,...
    p4=0  %[ton/m2]
end

% toe pressure
pu=(1/2)*(1+cosb)*alfa1*alfa3*w0*Hmax %[ton/m2]

%% TOTAL PRESSURE AND UPLIFT
hcs=min(etas,hc) %[m] this is hc*
% Total Wave Pressure
P=(0.5*(p1+p3)*(h1))+(0.5*(p1+p4)*hcs) %[ton/m]
% Total Uplift Pressure
U=0.5*(pu)*B %[ton/m3]

%% MOMENT OF WAVE PRESSURE
MP=((1/6)*(2*p1+p3)*(h1^2))+(0.5*(p1+p4)*h1*hcs)+((1/6)*(p1+2*p4)*hcs^2)  %[ton-m/m]

%% MOMENT OF UPLIFT PRESSURE
MU=(2/3)*U*B


Reference:
Goda (1984), Random Seas and Design of Maritime Structures, University of Tokyo Press